Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tsonko Kolev, ${ }^{\text {a }}$ Denitsa

Yancheva, ${ }^{\text {b }}$ Markus Schürmann, ${ }^{\text {a }}$ Dirk-Christian Kleb, ${ }^{\text {a }}$ Hans Preut $^{\text {a }}$ and Michael Spiteller ${ }^{\text {c }}$
${ }^{\mathrm{a}}$ Fachbereich Chemie, Universität Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany, ${ }^{\text {b }}$ Bulgarian Academy of Sciences, Institute of Organic Chemistry, 1113 Sofia, Bulgaria, and ${ }^{\mathrm{c}}$ Institut für Umweltforschung, Universität Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany

Correspondence e-mail:
uch002@uxp1.hrz.uni-dortmund.de

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.043$
$w R$ factor $=0.082$
Data-to-parameter ratio $=19.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-[5,5-Dimethyl-3-(2-p-tolyl-vinyl)-cyclohex-2-enylidene]-malononitrile

The crystal structure of the title compound, $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2}$, contains two independent molecules in the asymmetric unit. These molecules differ significantly only in the torsion angles of the dimethylcyclohexene moieties, which have twisted conformations. The molecules are nearly planar except for the $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$ groups.

Comment

In the course of our investigations on organic electro-optical, non-linear optical and photorefractive materials we determined the crystal structure of the title compound, (I). As a result of its solvatochromism, it is expected to be a good candidate for photorefractive and electro-optical applications.

The conversion of basic 2-(3,5,5-trimethyl-cyclohex-2-enyl-idene)-malononitrile into the corresponding 2-[5,5-dimeth-yl-3-(2-p-tolyl-vinyl)-cyclohex-2-enylidene]-malononitrile affords a way to enhance the charge-transfer transition at the molecular level - a requisite for the design of efficient secondand third-order non-linear optical materials.

The crystal structure contains no classical H-bonds, but $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~N} 21[\mathrm{H} \cdots A=2.62, D \cdots A=3.391$ (2) \AA, $D-$ $\mathrm{H} \cdots A=141^{\circ}$] is a possible non-classical H-bond.

The dihedral angle between the least-squares planes through atoms C1, C2, C3, C11, C12 and through C13, C14, $\mathrm{C} 15, \mathrm{C} 16, \mathrm{C} 17, \mathrm{C} 18$ is $8.24(9)^{\circ}$, whereas the corresponding angle in the other molecule in the asymmetric unit is only 3.74 (9) ${ }^{\circ}$

Experimental

The title compound was synthesized for the first time, according to a general procedure described by Lemke (1970): 3.72 g (20 mmol) 2-(3,5,5-trimethyl-cyclohex-2-enylidene)-malononitrile and 3.71 ml (20 mmol) 4-methyl-benzaldehyde were dissolved in 80 ml dry toluene with continuous stirring and heating under reflux for 60 min . Piperidine (1 ml) was used as a catalyst. After a few minutes, the solution became dark red. A bright yellow precipitate was obtained after evaporation of the solvent. The product was filtered and washed with ethanol and recrystallized from ethyl acetate. Yield of the recrystallized product: 33%; melting point: $428-429 \mathrm{~K}$. UV$\operatorname{vis}(\mathrm{EtOH}): \lambda_{\text {max }}(\log \varepsilon)=270.5 \mathrm{~nm}(3.702), 398.5 \mathrm{~nm}(4.329)$.

Received 27 August 2002 Accepted 4 September 2002 Online 13 September 2002

Figure 1
View of the title compound, showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 50% probability level. H atoms are omitted for clarity.

1094 The purity of the compound was confirmed by elemental analysis, IR, UV-vis and mass spectrometry. Crystals were grown from ethyl acetate by slow evaporation at room temperature over a period of a week.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2}$
$M_{r}=288.38$
Monoclinic, $P 2_{1} / n$
$a=13.5270(3) \AA$
$b=16.1781(3) \AA$
$c=16.3616(4) \AA$
$\beta=102.3807(9)^{\circ}$
$V=3497.32(13) \AA^{3}$
$Z=8$
$D_{x}=1.095 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 62924
reflections
$\theta=3.0-27.5^{\circ}$
$\mu=0.06 \mathrm{~mm}^{-1}$
$T=291$ (1) K
Block, orange
$0.50 \times 0.40 \times 0.32 \mathrm{~mm}$
Data collection
Nonius KappaCCD diffractometer

$$
R_{\mathrm{int}}=0.021
$$

$$
\theta_{\max }=27.5^{\circ}
$$

$$
h=-17 \rightarrow 17
$$

$$
k=-20 \rightarrow 20
$$

$$
l=-21 \rightarrow 20
$$

Refinement

$\begin{array}{ll}\text { Refinement on } F^{2} & \text { H-atoms parameters constrained } \\ R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043 & w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.02 P)^{2}\right] \\ w R\left(F^{2}\right)=0.082 & \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\ S=0.96 & (\Delta / \sigma)_{\max }=0.004 \\ 7998 \text { reflections } & \Delta \rho_{\max }=0.11 \mathrm{e} \AA^{-3} \\ 403 \text { parameters } & \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}\end{array}$

H atoms were placed in calculated positions with $U_{\text {iso }}$ constrained to be 1.5 times $U_{\text {eq }}$ of the carrier atom for the methyl-H and 1.2 times $U_{\text {eq }}$ for the remaining H atoms. The methyl groups were allowed to rotate but not to tip.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97, PARST95 (Nardelli, 1995), PLATON (Spek, 2001).

We thank the DAAD for a grant within the priority programme 'Stability pack for South Eastern Europe' and the Alexander von Humboldt-Stiftung Bonn, Bad Godesberg, (Germany).

References

Lemke, R. (1970). Chem. Ber. 103, 1894-1898.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276,
Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and
R. M. Sweet, pp. 307-326. London: Academic Press.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991).: SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.

